Convex Optimization Approaches to Information Structured Decentralized Control
نویسندگان
چکیده
منابع مشابه
Structured Sparsity and Convex Optimization
The concept of parsimony is central in many scientific domains. In the context of statistics, signal processing or machine learning, it takes the form of variable or feature selection problems, and is commonly used in two situations: First, to make the model or the prediction more interpretable or cheaper to use, i.e., even if the underlying problem does not admit sparse solutions, one looks fo...
متن کاملStructured sparsity through convex optimization
Sparse estimation methods are aimed at using or obtaining parsimonious representations of data or models. While naturally cast as a combinatorial optimization problem, variable or feature selection admits a convex relaxation through the regularization by the l1-norm. In this paper, we consider situations where we are not only interested in sparsity, but where some structural prior knowledge is ...
متن کاملDecentralized Convex Optimization for Wireless Sensor Networks
Many real-world applications arising in domains such as large-scale machine learning, wired and wireless networks can be formulated as distributed linear least-squares over a large network. These problems often have their data naturally distributed. For instance applications such as seismic imaging, smart grid have the sensors geographically distributed and the current algorithms to analyze the...
متن کاملStructured Sparsity: Discrete and Convex approaches
Compressive sensing (CS) exploits sparsity to recover sparse or compressible signals from dimensionality reducing, non-adaptive sensing mechanisms. Sparsity is also used to enhance interpretability in machine learning and statistics applications: While the ambient dimension is vast in modern data analysis problems, the relevant information therein typically resides in a much lower dimensional s...
متن کاملStructured Convex Optimization under Submodular Constraints
A number of discrete and continuous optimization problems in machine learning are related to convex minimization problems under submodular constraints. In this paper, we deal with a submodular function with a directed graph structure, and we show that a wide range of convex optimization problems under submodular constraints can be solved much more efficiently than general submodular optimizatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Automatic Control
سال: 2018
ISSN: 0018-9286,1558-2523,2334-3303
DOI: 10.1109/tac.2018.2830112